Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.333
Filtrar
1.
FEBS Open Bio ; 14(4): 643-654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429912

RESUMO

The neurotrophin nerve growth factor (NGF) and its precursor proNGF are both bioactive and exert similar or opposite actions depending on the cell target and its milieu. The balance between NGF and proNGF is crucial for cell and tissue homeostasis and it is considered an indicator of pathological conditions. Proteolytical cleavage of proNGF to the mature form results in different fragments, whose function and/or bioactivity is still unclear. The present study was conducted to investigate the distribution of proNGF fragments derived from endogenous cleavage in brain and peripheral tissues of adult rats in the healthy condition and following inflammatory lipopolysaccharide (LPS) challenge. Different anti-proNGF antibodies were tested and the presence of short peptides corresponding to the prodomain sequence (pdNGFpep) was identified. Processing of proNGF was found to be tissue-specific and accumulation of pdNGFpeps was found in inflamed tissues, mainly in testis, intestine and heart, suggesting a possible correlation between organ functions and a response to insults and/or injury. The bioactivity of pdNGFpep was also demonstrated in vitro by using primary hippocampal neurons. Our study supports a biological function for the NGF precursor prodomain and indicates that short peptides from residues 1-60, differing from the 70-110 sequence, induce apoptosis, thereby opening the way for identification of new molecular targets to study pathological conditions.


Assuntos
Fator de Crescimento Neural , Neurônios , Masculino , Ratos , Animais , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473977

RESUMO

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Assuntos
Peixes Listrados , Fatores de Crescimento Neural , Receptores de Fator de Crescimento Neural , Humanos , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Retina/metabolismo , Receptor trkA , Neurotrofina 3 , Fator Neurotrófico Derivado do Encéfalo
3.
FASEB J ; 38(1): e23312, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161282

RESUMO

ProBDNF is the precursor protein of brain-derived neurotrophic factor (BDNF) expressed in the central nervous system and peripheral tissues. Previous studies showed that the blood levels of both proBDNF and p75 neurotrophic receptors (p75NTR) in major depressive disorder (MDD) were increased, but which blood cell types express proBDNF and its receptors is not known. Furthermore, the relationship between proBDNF/p75NTR and inflammatory cytokines in peripheral blood of MDD is unclear. Peripheral blood mononuclear cells (PBMCs) and serum were obtained from depressive patients (n = 32) and normal donors (n = 20). We examined the expression of proBDNF and inflammatory markers and their correlative relationship in patients with major depression. Using flow cytometry analysis, we examined which blood cells express proBDNF and its receptors. Finally, the role of proBDNF/p75NTR signal in inflammatory immune activity of PBMCs was verified in vitro experiments. Inflammatory cytokines in PBMC from MDD patients were increased and correlated with the major depression scores. The levels of IL-1ß and IL-10 were also positively correlated with the major depression scores, while the levels of TNF-α and IL-6 were negatively correlated with the major depression scores. Intriguingly, the levels of sortilin were positively correlated with IL-1ß. Q-PCR and Western blots showed proBDNF, p75NTR, and sortilin levels were significantly increased in PBMCs from MDD patients compared with that from the normal donors. Flow cytometry studies showed that proBDNF and p75NTR were present mainly in CD4+ and CD8+ T cells. The number of proBDNF and p75NTR positive CD4+ and CD8+ T cells from MDD patients was increased and subsequently reversed after therapeutic management. Exogenous proBDNF protein or p75ECD-Fc treatment of cultured PBMC affected the release of inflammatory cytokines in vitro. ProBDNF promoted the expression of inflammatory cytokines, while p75ECD-Fc inhibited the expression of inflammatory cytokines. Given there was an inflammatory response of lymphocytes to proBDNF, it is suggested that proBDNF/p75NTR signaling may upstream inflammatory cytokines in MDD. Our data suggest that proBDNF/p75NTR signaling may not only serve as biomarkers but also may be a potential therapeutic target for MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Regulação para Cima , Linfócitos T CD8-Positivos/metabolismo , Depressão , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo
4.
CNS Neurol Disord Drug Targets ; 23(4): 449-462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37016521

RESUMO

Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Glioma/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
5.
Mol Neurobiol ; 61(1): 276-293, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37606717

RESUMO

The precursor nerve growth factor (ProNGF) and its receptor p75 neurotrophin receptor (p75NTR) are upregulated in several brain diseases, including ischemic stroke. The activation of p75NTR is associated with neuronal apoptosis and inflammation. Thus, we hypothesized that p75NTR modulation attenuates brain damage and improves functional outcomes after ischemic stroke. Two sets of experiments were performed. (1) Adult wild-type (WT) C57BL/6 J mice were subjected to intraluminal suture-middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. Pharmacological inhibitor of p75NTR, LM11A-31 (50 mg/kg), or normal saline was administered intraperitoneally (IP) 1 h post-MCAO, and animals survived for 24 h. (2) Adult p75NTR heterozygous knockout (p75NTR+/-) and WT were subjected to photothrombotic (pMCAO) to induce ischemic stroke, and the animals survived for 72 h. The sensory-motor function of animals was measured using Catwalk XT. The brain samples were collected to assess infarction volume, edema, hemorrhagic transformation, neuroinflammation, and signaling pathway at 24 and 72 h after the stroke. The findings described that pharmacological inhibition and genetic knocking down of p75NTR reduce infarction size, edema, and hemorrhagic transformation following ischemic stroke. Additionally, p75NTR modulation significantly decreased several anti-apoptosis markers and improved sensory motor function compared to the WT mice following ischemic stroke. Our observations exhibit that the involvement of p75NTR in ischemic stroke and modulation of p75NTR could improve the outcome of ischemic stroke by increasing cell survival and enhancing motor performance. LM11A-31 has the potential to be a promising therapeutic agent for ischemic stroke. However, more evidence is needed to illuminate the efficacy of LM11A-31 in ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Camundongos , Animais , Receptor de Fator de Crescimento Neural/metabolismo , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Camundongos Endogâmicos C57BL , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Encéfalo/metabolismo , Infarto , Edema
6.
Stem Cells Transl Med ; 13(3): 255-267, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159248

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been widely studied to alleviate acute lung injury (ALI) due to their paracrine function. However, the microenvironment of inflammatory outbreaks significantly restricted the factors secreted from MSCs like keratinocyte growth factor (KGF). KGF is a growth factor with tissue-repaired ability. Is there a better therapeutic prospect for MSCs in combination with compounds that promote their paracrine function? Through compound screening, we screened out isoxazole-9 (ISX-9) to promote MSCs derived KGF secretion and investigated the underlying mechanisms of action. METHODS: Compounds that promote KGF secretion were screened by a dual-luciferase reporter gene assay. The TMT isotope labeling quantitative technique was used to detect the differential proteins upon ISX-9 administrated to MSCs. The expressions of NGFR, ERK, TAU, and ß-catenin were detected by Western blot. In the ALI model, we measured the inflammatory changes by HE staining, SOD content detection, RT-qPCR, immunofluorescence, etc. The influence of ISX-9 on the residence time of MSCs transplantation was explored by optical in vivo imaging. RESULTS: We found out that ISX-9 can promote the expression of KGF in MSCs. ISX-9 acted on the membrane receptor protein NGFR, upregulated phosphorylation of downstream signaling proteins ERK and TAU, downregulated phosphorylation of ß-catenin, and accelerated ß-catenin into the nucleus to further increase the expression of KGF. In the ALI model, combined ISX-9 with MSCs treatments upgraded the expression of KGF in the lung, and enhanced the effect of MSCs in reducing inflammation and repairing lung damage compared with MSCs alone. CONCLUSIONS: ISX-9 facilitated the secretion of KGF from MSCs both in vivo and in vitro. The combination of ISX-9 with MSCs enhanced the paracrine function and anti-inflammatory effect of MSCs compared with MSCs applied alone in ALI. ISX-9 played a contributive role in the transplantation of MSCs for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Isoxazóis , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Tiofenos , Humanos , beta Catenina/metabolismo , beta Catenina/farmacologia , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Lesão Pulmonar Aguda/terapia , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
7.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003427

RESUMO

In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.


Assuntos
Peróxido de Hidrogênio , Receptor trkA , Humanos , Camundongos , Animais , Receptor trkA/metabolismo , Retroalimentação , Peróxido de Hidrogênio/farmacologia , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Linhagem Celular , Estresse Oxidativo , Células Epiteliais/metabolismo
8.
Sci Rep ; 13(1): 18364, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884604

RESUMO

Bupivacaine (BPV) can cause severe central nervous system toxicity when absorbed into the blood circulation system. Rapid intravenous administration of lipid emulsion (LE) could be used to treat local anaesthetic toxicity. This study aimed to investigate the mechanism by which the BDNF-TrkB/proBDNF-p75NTR pathway regulation by LE rescues BPV induced neurotoxicity in hippocampal neurons in rats. Seven- to nine-day-old primary cultured hippocampal neurons were randomly divided into 6 groups: the blank control group (Ctrl), the bupivacaine group (BPV), the lipid emulsion group (LE), the bupivacaine + lipid emulsion group (BPV + LE), the bupivacaine + lipid emulsion + tyrosine kinase receptor B (TrkB) inhibitor group (BPV + LE + K252a), the bupivacaine + lipid emulsion + p75 neurotrophic factor receptor (p75NTR) inhibitor group (BPV + LE + TAT-Pep5). All hippocampal neurons were incubated for 24 h, and their growth state was observed by light microscopy. The relative TrkB and p75NTR mRNA levels were detected by real-time PCR. The protein expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, TrkB, p75NTR and cleaved caspase-3 were detected by western blotting. The results showed that primary hippocampal neuron activity was reduced by BPV. As administration of LE elevated hippocampal neuronal activity, morphology was also somewhat improved. The protein expression and mRNA levels of TrkB and p75NTR were decreased when BPV induced hippocampal neuronal toxicity, while the expression of BDNF was increased. At the same time, BPV increased the original generation of cleaved caspase-3 protein content by hippocampal neurons, while the content of cleaved caspase-3 protein in hippocampal neurons cotreated with LE and BPV was decreased. Thus, this study has revealed LE may reduce apoptosis and promote survival of hippocampal neurons by regulating the BDNF-TrkB pathway and the proBDNF-p75NTR pathway to rescue BPV induced central neurotoxicity in rats.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Bupivacaína , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3 , Emulsões/farmacologia , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , RNA Mensageiro/metabolismo , Lipídeos
9.
J Endod ; 49(12): 1668-1675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660765

RESUMO

INTRODUCTION: In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS: Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS: Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS: Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Pulpite , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de Fator de Crescimento Neural/análise , Receptores de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural , Receptores Proteína Tirosina Quinases/metabolismo , Ubiquitina Tiolesterase
10.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558465

RESUMO

Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.


Assuntos
Prosencéfalo Basal , Lesões Encefálicas Traumáticas , Receptores de Fator de Crescimento Neural , Animais , Feminino , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Aferentes , Degeneração Retrógrada/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
11.
Chin J Physiol ; 66(4): 276-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635487

RESUMO

Neurotrophin receptor-interacting melanoma-associated antigen homolog (NRAGE), a type II melanoma-associated antigen, plays a critical role in cell processes that are involved in the tumorigenesis of various cancers. However, the effect of NRAGE on acute myeloid leukemia (AML) is rarely reported. The expression of NRAGE in AML tissues and the survival rates between different AML groups were obtained from the GEPIA tool. Human AML cell lines were cultured and transfected with siRNA targeting NRAGE. The ability of AML cells to proliferate and cell cycle were examined. Western blotting was performed to detect the activity of the extracellular signal-regulated kinase (ERK) signaling pathway in AML cells. NRAGE expression was enhanced in AML tissues relative to control tissues, and the high NRAGE expression in AML patients is associated with a poor prognosis. The capacity of AML cells to survive and proliferate was significantly decreased and its cell cycle was arrested at the G1 phase after NRAGE was silenced. Furthermore, silencing NRAGE induced the inactivation of the ERK signaling pathway. Furthermore, supplement of tert-Butylhydroquinone, an ERK activator, improved the reduced ability of AML cell survival and proliferation as well as cell cycle arrest induced by NRAGE knockdown. In this study, NRAGE was identified as a tumor promoter in AML, which had an effect on cell proliferation, cell survival, and cell cycle through the ERK signaling pathway in AML cells.


Assuntos
Leucemia Mieloide Aguda , Melanoma , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proliferação de Células , Ciclo Celular , Leucemia Mieloide Aguda/genética , Melanoma/genética , Linhagem Celular Tumoral , Apoptose
12.
Cell Death Dis ; 14(7): 440, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460457

RESUMO

Cytosine arabinoside (AraC) is one of the main therapeutic treatments for several types of cancer, including acute myeloid leukaemia. However, after a high-dose AraC chemotherapy regime, patients develop severe neurotoxicity and cell death in the central nervous system leading to cerebellar ataxia, dysarthria, nystagmus, somnolence and drowsiness. AraC induces apoptosis in dividing cells. However, the mechanism by which it leads to neurite degeneration and cell death in mature neurons remains unclear. We hypothesise that the upregulation of the death receptor p75NTR is responsible for AraC-mediated neurodegeneration and cell death in leukaemia patients undergoing AraC treatment. To determine the role of AraC-p75NTR signalling in the cell death of mature neurons, we used mature cerebellar granule neurons' primary cultures from p75NTR knockout and p75NTRCys259 mice. Evaluation of neurite degeneration, cell death and p75NTR signalling was done by immunohistochemistry and immunoblotting. To assess the interaction between AraC and p75NTR, we performed cellular thermal shift and AraTM assays as well as Homo-FRET anisotropy imaging. We show that AraC induces neurite degeneration and programmed cell death of mature cerebellar granule neurons in a p75NTR-dependent manner. Mechanistically, Proline 252 and Cysteine 256 residues facilitate AraC interaction with the transmembrane domain of p75NTR resulting in uncoupling of p75NTR from the NFκB survival pathway. This, in turn, exacerbates the activation of the cell death/JNK pathway by recruitment of TRAF6 to p75NTR. Our findings identify p75NTR as a novel molecular target to develop treatments for counteract AraC-mediated cell death of mature neurons.


Assuntos
Neurônios , Receptores de Fator de Crescimento Neural , Animais , Camundongos , Apoptose/fisiologia , Morte Celular , Células Cultivadas , Neuritos/metabolismo , Neurônios/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo
13.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511441

RESUMO

Neuronal cell fate is predominantly controlled based on the effects of growth factors, such as neurotrophins, and the activation of a variety of signaling pathways acting through neurotrophin receptors, namely Trk and p75 (p75NTR). Despite their beneficial effects on brain function, their therapeutic use is compromised due to their polypeptidic nature and blood-brain-barrier impermeability. To overcome these limitations, our previous studies have proven that DHEA-derived synthetic analogs can act like neurotrophins, as they lack endocrine side effects. The present study focuses on the biological characterization of a newly synthesized analog, ENT-A044, and its role in inducing cell-specific functions of p75NTR. We show that ENT-A044 can induce cell death and phosphorylation of JNK protein by activating p75NTR. Additionally, ENT-A044 can induce the phosphorylation of TrkB receptor, indicating that our molecule can activate both neurotrophin receptors, enabling the protection of neuronal populations that express both receptors. Furthermore, the present study demonstrates, for the first time, the expression of p75NTR in human-induced Pluripotent Stem Cells-derived Neural Progenitor Cells (hiPSC-derived NPCs) and receptor-dependent cell death induced via ENT-A044 treatment. In conclusion, ENT-A044 is proposed as a lead molecule for the development of novel pharmacological agents, providing new therapeutic approaches and research tools, by controlling p75NTR actions.


Assuntos
Fatores de Crescimento Neural , Receptor de Fator de Crescimento Neural , Humanos , Receptor de Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia
14.
J Mol Neurosci ; 73(6): 469-484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37314606

RESUMO

The early transition to Alzheimer's disease is characterized by a period of accelerated brain atrophy that exceeds normal ageing. Identifying the molecular basis of this atrophy could facilitate the discovery of novel drug targets. The precursor of brain-derived neurotrophic factor, a well characterized neurotrophin, is increased in the hippocampus of aged rodents, while its mature isoform is relatively stable. This imbalance could increase the risk of Alzheimer's disease by precipitating its pathological hallmarks. However, less is known about how relative levels of these isoforms change in middle-aged mice. In addition, the underlying mechanisms that might cause an imbalance are unknown. The main aim of this study was to determine how precursor brain-derived neurotrophic factor changes relative to its mature isoform with normal brain ageing in wild type mice. A secondary aim was to determine if signaling through the neurotrophin receptor, p75 influences this ratio. An increasing ratio was identified in several brain regions, except the hippocampus, suggesting a neurotrophic imbalance occurs as early as middle age. Some changes in receptors that mediate the isoforms effects were also identified, but these did not correspond with trends in the isoforms. Relative amounts of precursor brain-derived neurotrophic factor were mostly unchanged in mutant p75 mice. The lack of changes suggested that signaling through the receptor had no influence on the ratio.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Encéfalo/metabolismo , Envelhecimento , Atrofia
15.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834612

RESUMO

Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aß) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aß peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aß-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.


Assuntos
Doença de Alzheimer , Idoso , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mamíferos/metabolismo , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas tau/metabolismo
16.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768281

RESUMO

Nerve growth factor (NGF) was the first neurotrophin described. This neurotrophin contributes to organogenesis by promoting sensory innervation and angiogenesis in the endocrine and immune systems. Neuronal and non-neuronal cells produce and secrete NGF, and several cell types throughout the body express the high-affinity neurotrophin receptor TrkA and the low-affinity receptor p75NTR. NGF is essential for glucose-stimulated insulin secretion and the complete development of pancreatic islets. Plus, this factor is involved in regulating lipolysis and thermogenesis in adipose tissue. Immune cells produce and respond to NGF, modulating their inflammatory phenotype and the secretion of cytokines, contributing to insulin resistance and metabolic homeostasis. This neurotrophin regulates the synthesis of gonadal steroid hormones, which ultimately participate in the metabolic homeostasis of other tissues. Therefore, we propose that this neurotrophin's imbalance in concentrations and signaling during metabolic syndrome contribute to its pathophysiology. In the present work, we describe the multiple roles of NGF in immunoendocrine organs that are important in metabolic homeostasis and related to the pathophysiology of metabolic syndrome.


Assuntos
Síndrome Metabólica , Fator de Crescimento Neural , Humanos , Síndrome Metabólica/metabolismo , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
17.
Cells ; 12(3)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36766703

RESUMO

Differentiation of pluripotent stem cells (PSCs) is a promising approach to obtaining large quantities of skeletal myogenic progenitors for disease modeling and cell-based therapy. However, generating skeletal myogenic cells with high regenerative potential is still challenging. We recently reported that skeletal myogenic progenitors generated from mouse PSC-derived teratomas possess robust regenerative potency. We have also found that teratomas derived from human PSCs contain a skeletal myogenic population. Here, we showed that these human PSC-derived skeletal myogenic progenitors had exceptional engraftability. A combination of cell surface markers, CD82, ERBB3, and NGFR enabled efficient purification of skeletal myogenic progenitors. These cells expressed PAX7 and were able to differentiate into MHC+ multinucleated myotubes. We further discovered that these cells are expandable in vitro. Upon transplantation, the expanded cells formed new dystrophin+ fibers that reconstituted almost ¾ of the total muscle volume, and repopulated the muscle stem cell pool. Our study, therefore, demonstrates the possibility of producing large quantities of engraftable skeletal myogenic cells from human PSCs.


Assuntos
Células-Tronco Pluripotentes , Células Satélites de Músculo Esquelético , Teratoma , Humanos , Animais , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas , Diferenciação Celular , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Proteína Kangai-1/metabolismo , Receptor ErbB-3/metabolismo
18.
Sci Adv ; 9(2): eadc8825, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638181

RESUMO

Metastatic disease is a major cause of death for patients with melanoma. Melanoma cells can become metastatic not only due to cell-intrinsic plasticity but also due to cancer-induced protumorigenic remodeling of the immune microenvironment. Here, we report that innate immune surveillance by natural killer (NK) cells is bypassed by human melanoma cells expressing the stem cell marker NGFR. Using in vitro and in vivo cytotoxic assays, we show that NGFR protects melanoma cells from NK cell-mediated killing and, furthermore, boosts metastasis formation in a mouse model with adoptively transferred human NK cells. Mechanistically, NGFR leads to down-regulation of NK cell activating ligands and simultaneous up-regulation of the fatty acid stearoyl-coenzyme A desaturase (SCD) in melanoma cells. Notably, pharmacological and small interfering RNA-mediated inhibition of SCD reverted NGFR-induced NK cell evasion in vitro and in vivo. Hence, NGFR orchestrates immune control antagonizing pathways to protect melanoma cells from NK cell clearance, which ultimately favors metastatic disease.


Assuntos
Antineoplásicos , Melanoma , Camundongos , Animais , Humanos , Linhagem Celular Tumoral , Melanoma/patologia , Células Matadoras Naturais , Lipídeos , Microambiente Tumoral , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
19.
J Orthop Res ; 41(2): 316-324, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35578994

RESUMO

Nerve growth factor (NGF) is a neurotrophin that has been implicated in pain signaling, apoptosis, inflammation and proliferation. The resultant effects depend on interaction with two different receptors; tyrosine kinase A (TrkA) and p75NTR . NGF increases in synovial fluid from osteoarthritic joints, and monoclonal antibody therapy is trialed to treat osteoarthritis (OA)-related pain. Investigation of the complex and somewhat contradictory signaling pathways of NGF is conducted in neural research, but has not followed through to orthopaedic studies. The objectives of this study were to compare the expression of NGF receptors and the downstream regulator BAX in synovial membranes from joints in various stages of OA. The horse was used as a model. Synovial membranes were harvested from five healthy horses postmortem and from clinical cases with spontaneous OA undergoing arthroscopic surgery for lameness. Four horses with synovitis without gross cartilage changes, four horses with synovitis and cartilage damage, and four horses with synovitis and intracarpal fractures were included. Samples were investigated by immunohistochemistry and results showed that nuclear staining of TrkA, p75NTR and BAX increases in OA-associated synovitis. TrkA expression increased in early disease stages whereas increases in p75NTR were most prominent in later disease stages with cartilage damage and fibrosis. Clinical significance: Suppression of NGF may result in varied effects depending on different stages of the osteoarthritic disease process.


Assuntos
Osteoartrite , Sinovite , Cavalos , Animais , Receptor trkA/metabolismo , Fator de Crescimento Neural/metabolismo , Proteína X Associada a bcl-2 , Receptores de Fator de Crescimento Neural/metabolismo , Membrana Sinovial/metabolismo , Dor , Gravidade do Paciente
20.
Exp Neurol ; 359: 114161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787888

RESUMO

The precursor form of nerve growth factor (proNGF) is essential to maintain NGF survival signaling. ProNGF is also among endogenous ligands for p75 neurotrophin receptor (p75ntr). Mounting evidence implies that p75ntr signaling contributes to neural damage in ischemic stroke. The present study examines the therapeutic effect of the p75ntr modulator LM11A-31. Adult mice underwent transient distal middle cerebral artery occlusion (t-dMCAO) followed by LM11A-31 treatment (25 mg/kg, i.p., twice daily) either for 72 h post-injury (acute phase) or afterward till two weeks post-stroke (subacute phase). LM11A-31 reduced blood-brain barrier permeability, cerebral tissue injury, and sensorimotor function in the acute phase of stroke. Ischemic brain samples showed repressed proNGF/P75ntr signaling and Caspase 3 activation in LM11A-31 treated mice, where we observed less reactive microglia and IL-1ß production. LM11A-31 (20-80 nM) also mitigated neural injury induced by oxygen-glucose deprivation (OGD) in sandwich co-cultures of primary cortical neurons (PCN) and astrocytes. This concurred with JNK/PARP downregulation and reduced caspase-3 cleavage in the PCNs and was associated with repressed proNGF generation in astrocytes. Further in vitro experiments indicated human proNGF suppresses the pro-inflammatory phenotype in microglial cultures, as determined by a sharp decline in HMGB-1 production and moderate arginase-1 upregulation. Despite significant protection in acute stroke, LM11A-31 treatment did not improve cortical atrophy and sensorimotor function in the subacute phase. Our findings provide preclinical evidence supporting LM11A-31 as a promising therapy for acute stroke injury. Further investigations may elucidate if reduced astrocytic proNGF, an endogenous reservoir of pro-neurotrophins, may restrict the therapeutic window.


Assuntos
Receptor de Fator de Crescimento Neural , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Receptor de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/metabolismo , Astrócitos/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...